If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-9x-20=x^2+5x+16
We move all terms to the left:
3x^2-9x-20-(x^2+5x+16)=0
We get rid of parentheses
3x^2-x^2-9x-5x-16-20=0
We add all the numbers together, and all the variables
2x^2-14x-36=0
a = 2; b = -14; c = -36;
Δ = b2-4ac
Δ = -142-4·2·(-36)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-22}{2*2}=\frac{-8}{4} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+22}{2*2}=\frac{36}{4} =9 $
| x^-9+14=0 | | 3-4x=17-6x | | -8+2x=x-5 | | k=(3/4)+(1/3) | | g=12/15/6/50 | | (3v+2)-(v+1)=v+(2*v+3) | | 56p*56p+8=67 | | Z^4+10z^2+9=0 | | (y+1/16)(y+2/3)=0 | | 13-6n=1 | | y^2+2/3y+1/16y+1/24=0 | | 27x2-81x+144=0 | | -3(X)=6-7x | | f(-3)=6-7(-3) | | 9x-3x=15 | | 7x+123(12x-7)-45=5x(4x+8+9)-2x(5+10) | | 9x-7=(-)7x-14 | | 4y+15=7y-11 | | 2(3x+9)=15 | | v+3=120 | | 2x+(x+64)=180 | | x-2+x-3=1 | | 548-d=216 | | 5+3x=76 | | 5-c=47 | | 9k-3k=15 | | x+2/6-(11-x/13-1/4)=3x-4/12 | | 2/7(x-9)+x/3=3 | | y-1/3-y-2/4=1+3y-2/5 | | n+8+56-20=40 | | y+7/3=13y-2/5 | | 9x-8x+7=8-3 |